logologo
Contact

HOMEABOUTSERVICESBLOGSBOOKSSHOPCONTACT

+977 9803661701support@nepatronix.orgLokanthali, Bhaktapur

© 2025 NepaTronix all rigths reserved

Controlling Fan Speed with Variable Resistance Using Potentiometer(STEAM Education)

  Back To Blogs

To understand the concept of variable resistance using a potentiometer and demonstrate its application in controlling the speed of Motor with Fan.

Project : 21


Controlling Fan Speed with Variable Resistance (Potentiometer)

If you want to post your project ,research or any document related to Ai,Ml,IoT,Robotics then please email us with your image ,details and your project at blog@nepatronix.org

Project Aim:

To understand the concept of variable resistance using a potentiometer and demonstrate its application in controlling the speed of Motor with Fan.


Components Used:

1.     Power Supply

2.     Resistors of 100Ω & 220Ω

3.     Motor with Fan

4.     NPN Transistor

5.     Potentiometer

6.     Connecting Wires

 

Circuit Diagram:

 

Connection Procedure:

Step 1: Placing Potentiometer in the KIT Board, Connect VCC terminal of the Potentiometer to Pin 69, OUTPUT terminal to Pin 67 and GND terminal to the Pin 65

Step 2: Connect the positive terminal of the power supply (pin 62) to one end of Resistor 220Ω (R2, Pin 3).

Step 3: Connect another end of the Resistor 220Ω (R2, Pin 4) to Positive terminal of Motor  (Pin 41).

Step 4: Connect Negative terminal of Motor (Pin 42) to Collector pin of NPN Transistor (Pin 31).

Step 5: Connect Emitter pin of NPN Transistor (Pin 29) to the negative terminal of Power Supply (Pin 59).

Step 6: Connect the Base of the NPN transistor (Pin 30) to one end of the Resistor 100Ω (Pin1).

Step 7: Connect the other end of the resistor 100Ω (Pin 2) to the output terminal of the potentiometer corresponding pin (Pin 68).

Step 8: Connect the VCC terminal of the potentiometer corresponding pin (Pin 70) to the positive terminal of the power supply (Pin 63).

Step 9: Connect the GND terminal of the potentiometer corresponding pin (Pin 66) to the negative terminal of the power supply (pin 60).

Step 10: Adjust the potentiometer's sliding contact to regulate the voltage at the base of the NPN transistor, controlling the speed of Motor Fan.

 

Explanation:

In this project, we'll explore how a potentiometer, a type of variable resistor with three terminals, regulates electric current flow. By adjusting the position of a sliding contact along a uniform resistance, the potentiometer acts as a voltage divider. The input voltage is distributed across the resistor's length, and the output voltage is the difference between the fixed and sliding contacts. Rotating the sliding arm changes the resistance, thereby altering the speed of Motor Fan. This allows us to achieve controlled output based on the potentiometer's position.


If you want to post your project ,research or any document related to Ai,Ml,IoT,Robotics then please email us with your image ,details and your project at blog@nepatronix.org




Total likes : 3

Comments







Read More Blogs!

Top 5 IoT Final Year Projects

Welcome to Nepatronix Blog - Your Gateway to IoT and Robotics Innovation! At Nepatronix, we’re passionate about exploring the latest in IoT, robotics, and technology. Our blog is designed to inspire tech enthusiasts, students, and professionals alike by sharing in-depth tutorials, cutting-edge project ideas, and hands-on guides in the world of Arduino programming, IoT solutions, robotics development, and beyond. Whether you're a beginner just starting your tech journey or an expert looking to dive deeper into complex projects, you'll find valuable resources, step-by-step guides, and insightful articles here. Join us as we delve into exciting topics, from smart automation to innovative product development, and be part of a community dedicated to pushing the boundaries of what’s possible. Stay tuned for updates, project showcases, and expert advice to help you grow your knowledge and bring your ideas to life!


3.9k08

Electromagnet with Compass(STEAM Education)

To understand the concept of electromagnetism and explore the direction of magnetic fields and poles.


1.8k05

Run Motor Fan from Solar(STEAM Education)

To understand the practical application of solar energy by demonstrating its conversion into electrical energy to power a Motor Fan.


1.7k03

RFID Attendance System(IoT Projects Arduino)

This project IoT Projects Arduino is designed to create an RFID-based attendance system using an ESP32 microcontroller and an MFRC522 RFID reader. The system reads RFID card UIDs, compares them with predefined UIDs to identify users, and displays the results on a LiquidCrystal_I2C LCD screen. If the scanned card UID matches the predefined UID, a "Welcome" message is shown; IoT Projects Arduino otherwise, an "Access Denied" message is displayed. This project demonstrates the use of RFID technology for access control and attendance management.IoT Projects Arduino


2.8k07